元加强学习(META-RL)是一种方法,即从解决各种任务中获得的经验被蒸馏成元政策。当仅适应一个小(或仅一个)数量的步骤时,元派利赛能够在新的相关任务上近距离执行。但是,采用这种方法来解决现实世界中的问题的主要挑战是,它们通常与稀疏的奖励功能相关联,这些功能仅表示任务是部分或完全完成的。我们考虑到某些数据可能由亚最佳代理生成的情况,可用于每个任务。然后,我们使用示范(EMRLD)开发了一类名为“增强元RL”的算法,即使在训练过程中获得了次优的指导,也可以利用此信息。我们展示了EMRLD如何共同利用RL和在离线数据上进行监督学习,以生成一个显示单调性能改进的元数据。我们还开发了一个称为EMRLD-WS的温暖开始的变体,该变体对于亚最佳演示数据特别有效。最后,我们表明,在包括移动机器人在内的各种稀疏奖励环境中,我们的EMRLD算法显着优于现有方法。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译